/Guroup fairness for users: equitable outcome across user groups; the
groups can be formed based on one or more sensitive attributes (e.g., age)
- Example: similar effectiveness for users from different age groups
Individual fairness for users: equitable outcome for (similar) users
(Example: similar effectiveness for all users
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highly fair for groups can be
very unfair for individuals!

We study the relationship between evaluation measures
of user-side group fairness and individual fairness

Recommender systems that are

~

/

Background \ 4

e Fairness is an important aspect of Recommender Systems (RSs),
and can be evaluated for groups or for individuals
e Prior work discusses conceptually how RSs can be fair to groups
and at the same time unfair to individuals, or vice versa
e However, no work has empirically studied this
e Prior work either:
o Evaluates fairness only for groups or for individuals
o Evaluates both, but with two different measures or for different
subjects (users/items) or objectives
- Hard to compare properly!

To address this gap, we evaluate user-side group and individual
fairness with measures that can quantify both

Experimental Setup

Datasets (3):

e MovieLens-1M (ML-1M), Job Recommendation (JobRec), LFM-1B
e Each dataset has 3 sensitive attributes

LLM-Based Recommenders (4):

GLM-4-9B, Llama-3.1-8B, Ministral-8B, Qwen2.5-/B

Prompt Types (2): Both use in-context learning (train+val items as input)

e Non-Sensitive (NS): does not contain user’s sensitive attributes
e Sensitive (S): contains user's sensitive attributes

Evaluation: all at k=10

o Effectiveness: HR@k, MRR@k, P@k, NDCG@k
e Fairness: 10 group fairness measures + 3 individual fairness measures

Intersectional Fairness

Finding #2: Fairness worsens as more attributes are used to form
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groups - important to consider intersectionality of user identities!

Model: GLM-4-9B (NS) — SD Gini e Atk
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Grp(n) is the mean group fairness score across all ways of grouping users when considering n attribute(s)

Takeaway: evaluate for individual and within-group fairness
alongside group fairness!
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Effectiveness (NDCG) and Fairness (Gini)
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widely across users!”

Fairness is better between groups than across

all individuals!" Both groups have similar average
NDCG?, but within-group variance is high,’ which
means that recommendation quality varies >
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Individual vs Group Fairness

Finding #1: No existing individual FAIR measures make a reliable

proxy for group fairness measures - need to evaluate both!

Kendall's Tau correlation (t) of fairness measures.

The higher the t between two

measures, the more similar they rank recommender models.
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Fairness Decomposability e

Finding #3: Within-group fairness tends to be worse than

between-group fairness, regardless of how users are grouped

Unfairness B between-group
Model: GLM-4-9B (NS) LFM-1B*
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*We find similar trends with other datasets!
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