

Stairway to Fairness: Connecting Group and Individual Fairness

Theresia Veronika Rampisela¹ Maria Maistro¹ Tuukka Ruotsalo^{1, 2} Falk Scholer³ Christina Lioma¹ ¹University of Copenhagen, Denmark ²LUT University, Finland ³RMIT University, Australia

Email: thra@di.ku.dk X: @theresia_v_r

Recommender systems that are highly fair for groups can be very unfair for individuals!

We study the relationship between evaluation measures of user-side group fairness and individual fairness

Group fairness for users: equitable outcome across user groups; the groups can be formed based on one or more sensitive attributes (e.g., age) → Example: similar effectiveness for users from different age groups Individual fairness for users: equitable outcome for (similar) users → Example: similar effectiveness for all users

Background

- Fairness is an important aspect of Recommender Systems (RSs), and can be evaluated for **groups** or for **individuals**
- Prior work discusses conceptually how RSs can be fair to groups and at the same time unfair to individuals, or vice versa
- However, no work has empirically studied this
- Prior work either:
 - Evaluates fairness only for groups or for individuals
 - Evaluates both, but with two different measures or for different subjects (users/items) or objectives
 - → Hard to compare properly!

To address this gap, we evaluate user-side group and individual fairness with measures that can quantify both

Experimental Setup

Datasets (3):

- MovieLens-1M (ML-1M), Job Recommendation (JobRec), LFM-1B
- Each dataset has 3 sensitive attributes

LLM-Based Recommenders (4):

GLM-4-9B, Llama-3.1-8B, Ministral-8B, Qwen2.5-7B

Prompt Types (2): Both use in-context learning (train+val items as input)

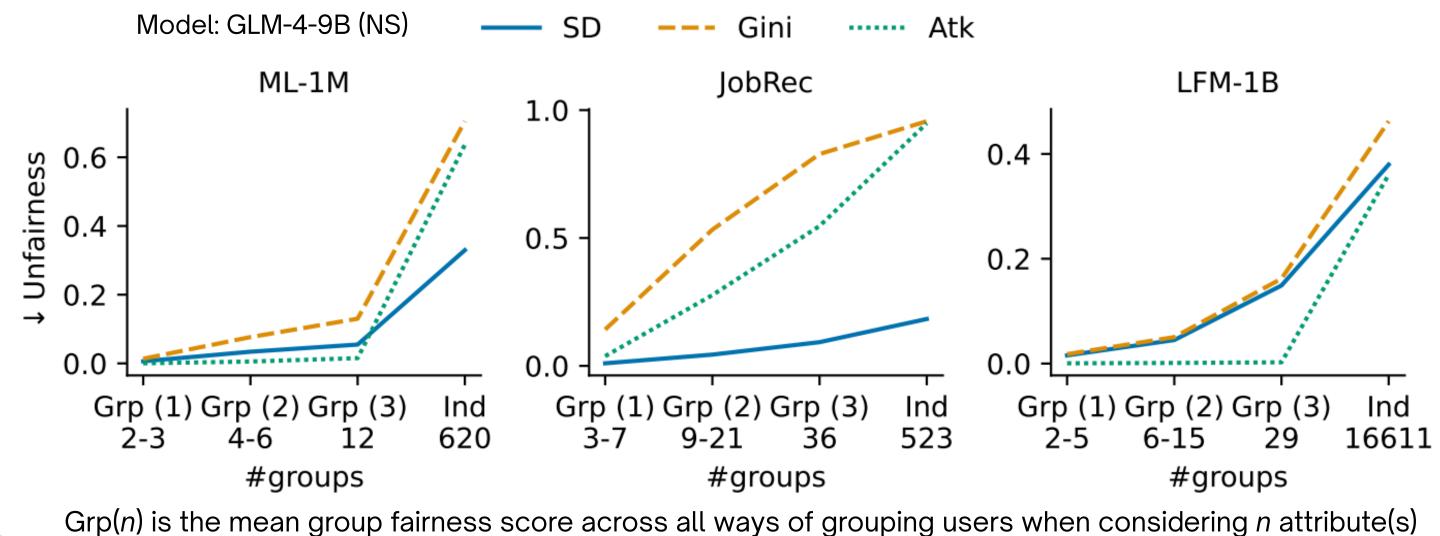
- Non-Sensitive (NS): does not contain user's sensitive attributes
- Sensitive (S): contains user's sensitive attributes

Evaluation: all at *k=10*

- Effectiveness: HR@k, MRR@k, P@k, NDCG@k
- Fairness: 10 group fairness measures + 3 individual fairness measures

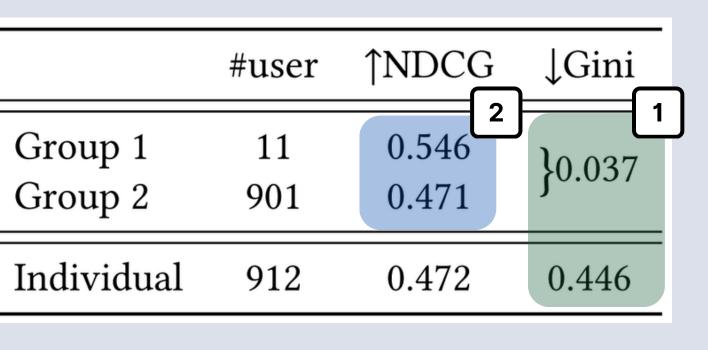
Intersectional Fairness

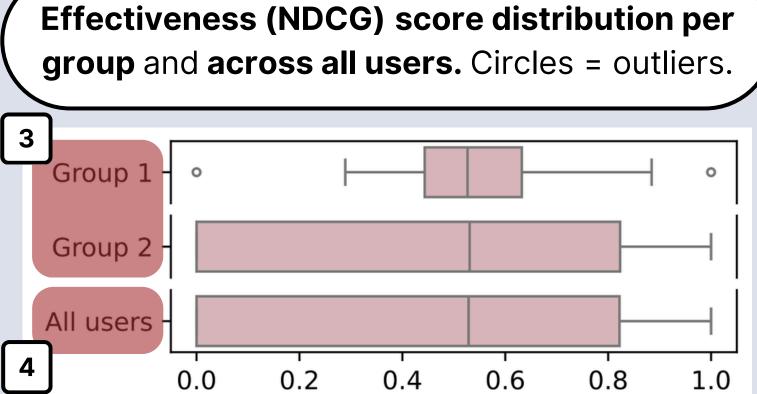
Finding #2: Fairness worsens as more attributes are used to form groups → important to consider intersectionality of user identities!



Takeaway: evaluate for individual and within-group fairness alongside group fairness!

Effectiveness (NDCG) and Fairness (Gini) for user groups and individual users.





NDCG

0.2

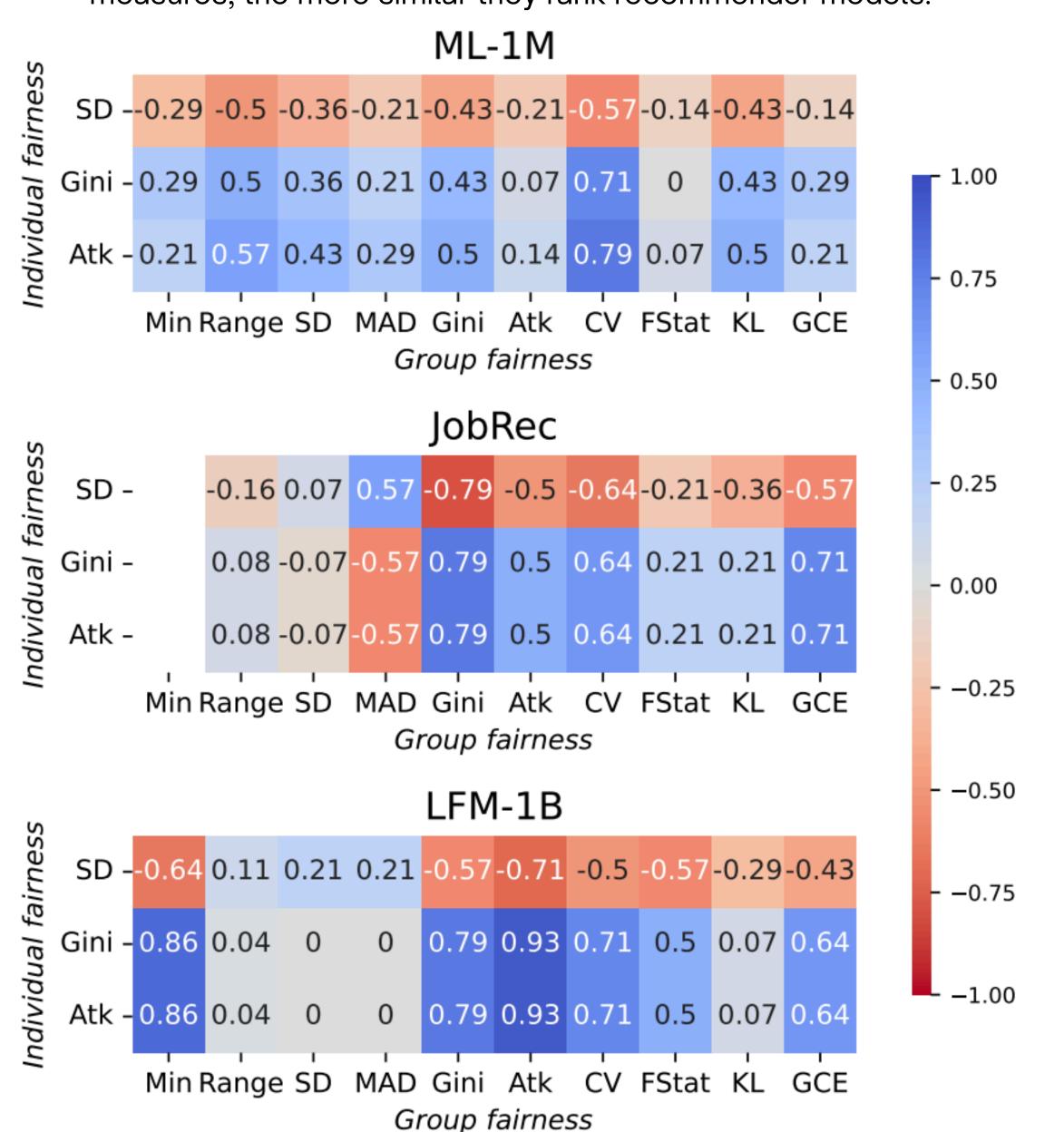
0.0

Fairness is better between groups than across all individuals! Both groups have similar average NDCG², but within-group variance is high,³ which means that recommendation quality varies widely across users!4

Individual vs Group Fairness

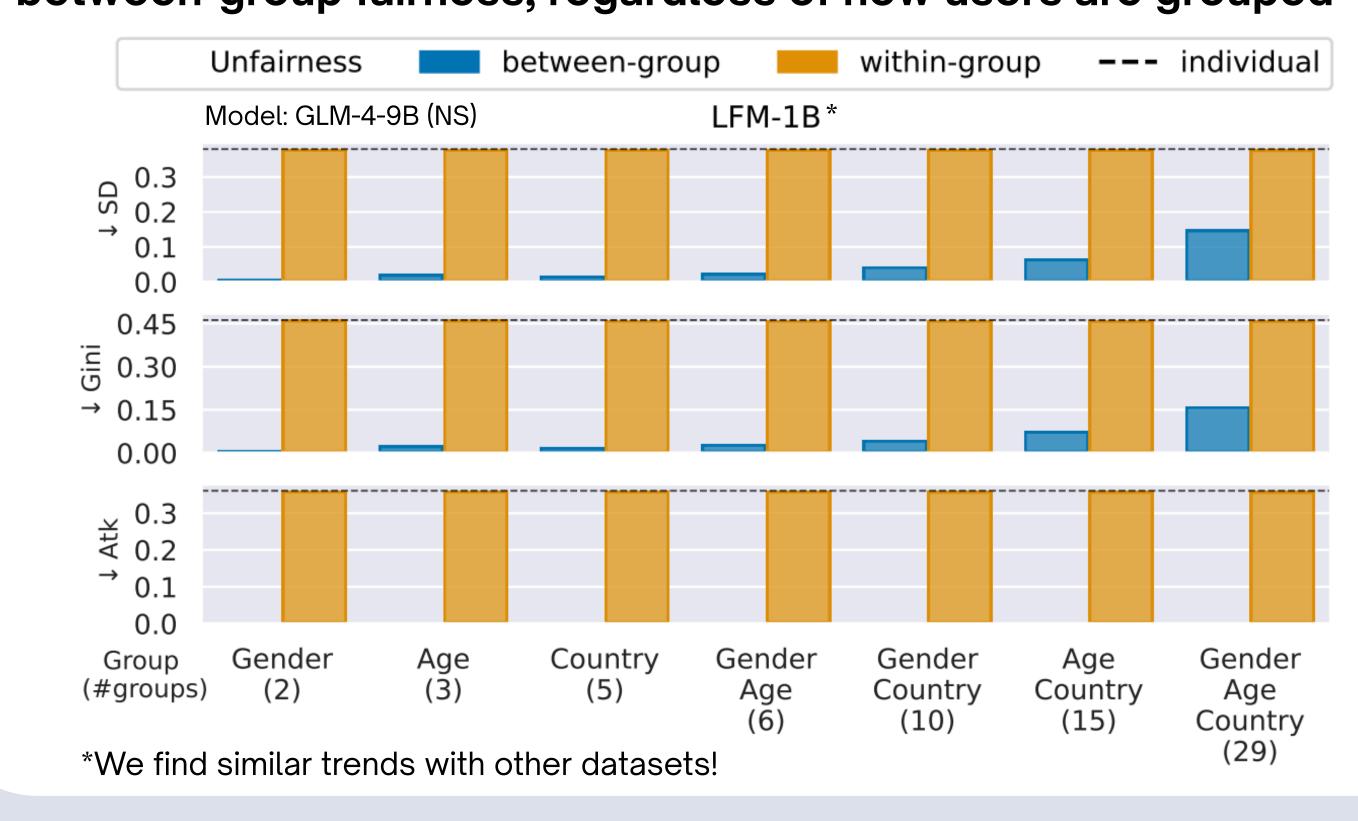
Finding #1: No existing individual FAIR measures make a reliable proxy for group fairness measures → need to evaluate both!

Kendall's Tau correlation (τ) of fairness measures. The higher the τ between two measures, the more similar they rank recommender models.



Fairness Decomposability

Finding #3: Within-group fairness tends to be worse than between-group fairness, regardless of how users are grouped



This work is supported by:

VILLUM FONDEN

